Essentials of Tropical Combinatorics by Michael Joswig Chapter 2.3 2.4

Siddu Boyeneni and Nathan Stefanik

March 2021

つへへ

Table of Contents

D

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Let $f \in \mathbb{K}[x_1^{\pm}, x_2^{\pm}, \ldots, x_d^{\pm}]$ \mathcal{A}_d^{\pm}] be a homogeneous nonzero Laurent polynomial of degree $\delta.$ Then, for all $\mathsf{p} \in \mathbb{R}^{\mathsf{d}}$ and all $\lambda \in \mathbb{K},$

$$
f(\lambda p)=\lambda^{\delta}f(p).
$$

The affine hypersurface of f , $\mathcal{V}(f) \subset \mathbb{K}^{d}$, is a union of one-dimensional linear subspaces.

イロト

The set $\mathrm{PG}(\mathbb{K}^d)$ of linear subspaces of \mathbb{K}^d , equipped with the partial ordering by inclusion, is called the $(d-1)$ -dimensional projective space over \mathbb{K} .

 $V(f)$ is called the projective hypersurface in PG(\mathbb{K}^d), often written as PG_{d-1} K.

4 0 8

 $V(f)$ is called the projective hypersurface in PG(\mathbb{K}^d), often written as $PG_{d-1}\mathbb{K}$.

This is because f is homogeneous. We apply the mapping from 1.4 into $d-1$ dimensions.

$$
(x_1, x_2,..., x_d)
$$
 + R1 \mapsto $(x_2 - x_1, x_3 - x_1,..., x_d - x_1)$

Corollary

For a homogenous polynomial $f\in \mathbb{K}[x_1^{\pm},x_2^{\pm},\ldots,x_d^{\pm}]$ \mathcal{L}_d^{\pm}] the tropical hypersurface $T(\text{trop}(f))$ equals the topological closure of the set $\operatorname{ord}(V(f))$ in \mathbb{R}^d/\mathbb{R} 1.

The addition of tropical polynomials

$$
F(X) = \bigoplus_{u \in S} a_u \odot X_1^{u_1} \dots X_d^{u_d}, G(X) = \bigoplus_{v \in T} b_v \odot X_1^{v_1} \dots X_d^{v_d}
$$

with coefficients $a_b, b_b \in \mathbb{T}$ is defined as

$$
(F \oplus G)(X) := \oplus_{w \in S \cup T} (a_w \oplus b_w) \odot X_1^{w_1} ... X_d^{w_d}
$$

, where we take $a_u = \infty$ for $u \in T \backslash S$ and $b_v = \infty$ for $v \in S \backslash T$

4 0 8

We then take the product of tropical polynomials to be

$$
(F\odot G)(X):=\oplus_{u\in S}\oplus_{v\in T}(a_u\odot b_v)\odot X_1^{u_1+v_1}...X_d^{u_d+v_d}
$$

4 D F

We now explore the connection between tropical geometry and optimization. Ie. for $A=(a_{ij})\in\mathbb{Z}^{d\times n},$ $b\in\mathbb{Z}^{d},$ $c\in\mathbb{R}^{n}$ we observe the optimization problem of minimizing $\langle c, x \rangle$. subject to $x \in \mathbb{N}^n$, $Ax = b$, an integer linear program.

Assumption 2.16

We assume that the matrices A and the vector b are nonnegative, and assume $\exists \delta, k \in \mathbb{N}$ such that each column of A sums to δ , and the sum of the coefficients of b equals $k \cdot \delta$. z

Lemma 2.17

It turns out that any solution $x \in \mathbb{N}^n$ to the optimization problem satisfies $x_1 + x_2... + x_n = k$.

 QQ

Let F(X) denote the d-variate tropical polynomial $\oplus_{j=1}^n c_j \odot \mathcal{X}_1^{a_1}$ $x_1^{a_{1j}}...x_d^{a_{dj}}$ ra_{dj .}
d We note that this polynomial is homogeneous of degree δ (by the previous assumption)

Theorem

The optimal value of the integer linear program is the coefficient of the monomial $X_1^{b_1}\cdots X_d^{b_d}$ of $F(X)^{\odot k}$, which is kth power of the tropical polynomial F(X).

つへへ

Let

$$
A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} 3 \\ 3 \end{pmatrix},
$$

which yields $d = 2, n = d, \delta = 2,$ and $k = 3$. Let $c = (0, 0, 1)$. To find the optimum integer solution x, we construct the homogenous tropical polynomial below.

$$
F(X, Y) = X^2 \oplus Y^2 \oplus 1 \otimes XY
$$

4 D F

We wish to find the $k = 3$ power of F for our optimal solution (by theorem 2.18). Thus,

 $F(X, Y)^{\oplus 3} = X^6 \oplus X^5 Y \oplus X^4 Y^2 \oplus 1 \otimes X^3 Y^3 \oplus X^2 Y^4 \oplus 1 \otimes XY^5 \oplus Y^6.$

The monomial X^3Y^3 has a coefficient of 1. Thus,

$$
1 = \min\{\langle c, x\rangle \mid x \in \mathbb{N}^n, Ax = b\},\
$$

and so $\mathsf{x} =$ $\sqrt{ }$ \mathcal{L} 1 1 1 \setminus \cdot

Let $\mathsf f$ and $\mathsf g$ be polynomials in $\mathbb C\{\{t\}\}[\mathsf x_1^\pm,\mathsf x_2^\pm,...,\mathsf x_d^\pm]$ $\left[\begin{smallmatrix} \pm & \ -d \end{smallmatrix}\right]$ such that $g \in \langle f \rangle$. Show that their tropical hypersurfaces satisfy $\mathcal{F}(f) \subseteq \mathcal{F}(g)$. When do we have equality?

For $f \in \mathbb{C}\{\{t\}\}[x_1^{\pm}, x_2^{\pm}, ..., x_d^{\pm}]$ $\begin{bmatrix} \pm \\ d \end{bmatrix}$,

$$
\langle f \rangle = \mathbb{K}[x_1^{\pm}, x_2^{\pm}, ..., x_d^{\pm}] \cdot f.
$$

Thus, $V(g)$ contains the vanishing points of f. We have equality when $g = f$.

 QQQ

Prove the distributive law in the polytope algebra B_d : For polynomials $P,Q,R\subset \mathbb{R}^d$ show that $(P\oplus Q)\odot R=(P\odot R)\oplus (Q\odot R)$ holds.

4 0 8