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Point Configurations

Definition

(De Loera, et al.) A point configuration V = {v1, . . . , vn} ⊂ Rd is a finite
set of (not necessarily distinct) points in Euclidean space Rd .
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Point Configurations

For convenience, we will consider graded point configurations in this
chapter where all the points lie on the hyperplane x1 = 1. We can convert
any point configuration V into a graded point configuration by considering
A = {

( 1
v1

)
,
( 1
v2

)
, · · · ,

( 1
vn

)
}.
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Faces of Point Configurations

Let ai denote the i-th element of A and σ ⊆ [n] be a subset of indices. A
subset Aσ of a point configuration is called a face of A if the elements of
Aσ are precisely those that lie on a face of the polytope conv(A).
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Oriented Matroid

Definition

Two point configurations are combinatorically equivalent if they have
identical sets of circuits up to relabeling.

This defines an equivalence relation on the set of all configurations, and
the equivalence class of a configuration with respect to this equivalence
relation is called its oriented matriod.
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Subdivisions

A subdivision ∆ = {σ1, . . . , σt} of a point configuration A is a collection
of subsets σi ⊆ [n], i = 1, . . . , t such that

1. dim(σi ) = d − 1 for all i = 1, . . . , t.

2.
⋃
σi∈∆ conv(Aσi ) = conv(A).

3. For i 6= j , conv(Aσi ) ∩ conv(Aσj ) = conv(Aτ ) where τ = σi ∩ σj is a
common face of σi and σj .
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Triangulations

Recall that a k-simplex is the convex hull of k + 1 affinely independent
points in Rd . A triangulation of a point configuration A is a collection T
of d-simplices, all of whose vertices are points in A such that

1. The union of all these simplices equals conv(A).

2. Any pair of these simplices intersects in a common face.
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Triangulations

The sets {σi : i = 1, ..., t} are the facets (d − 1 faces) of ∆ and the
indices that appear in the facets are called the vertices (0-faces).
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Triangulations

A triangulation in which every i ∈ [n] is a vertex is called a fine
triangulation.
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De Loera, et al. Ch. 7 Some Interesting Triangulations

The mother of all triangulations has the following point configuration.

M :=

1 2 3 4 5 6( )4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

This point configuration and other similar configurations can be further
studied in chapter 7 of De Loera, et al.
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De Loera, et al. Ch. 7 Some Interesting Triangulations
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Triangulations and Data Structures

Surfaces can be represented in code by using their triangulation. We can
store vertices in a linear array and triangles in the nodes of a graph where
edges connect neighboring triangles.

Some algorithms may benefit from
such a structure. Also, we can use them to determine the topological type
of a surface.
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De Loera, et al. Ch. 6 Some Interesting Configurations

Definition

For n > d ≥ 0, the d-dimensional standard cyclic point configuration
with n points is the following point configuration:

C(n, d) :=

1 2 . . . n


1 2 . . . n
1 1 . . . 1
1 2 . . . n
...

...
...

1 2d . . . nd

The cyclic polytope is the convex hull of the points of C(n, d).
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De Loera, et al. Ch. 6 Some Interesting Configurations

Pritchard, Stefanik Triangulations of Point Configurations Feb 2021 15 / 30



De Loera, et al. Ch. 6 Some Interesting Configurations

Cyclic polytopes have many triangulations.

Theorem (6.1.22)

If d is fixed, the cyclic polytope C(n, d) has at least Ω(2bd/2c)
triangulations.

Cyclic polytopes are helpful for their ”friendly” poset structure on the set
of all triangulations of cyclic polytopes.
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De Loera, et al. Ch. 6 Some Interesting Configurations

Below is a diagram of the triangulations of C(6, 1) drawn as characteristic
sections.
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Regular Subdivisions

Given a graded point configuration in Rd , we can “lift” it into Rd+1 using
a weight vector.
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Regular Subdivisions

Let Pω ⊂ Rd+1 be the convex hull of this lifted point configuration. Then,
projecting the “lower” faces of Pω back onto A induces a subdivision of
A, which we denote ∆ω and call a regular subdivision.
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Cones

A cone K ⊆ Rd is any subset of Rd such that

1. For x , y ∈ K , x + y ∈ K .

2. For x ∈ K and λ ≥ 0, λx ∈ K .
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Cones

A polyhedral cone K ⊆ Rd is a polyhedron of the form

K = {x ∈ Rd : Mx ≥ 0}

where M is a real matrix.
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Cones

A polyhedral cone can also be thought of as the set of all non-negative
combinations of columns of some real matrix N

K = {Ny : ≥ 0}

Theorem

Every finitely generated constrained cone is a finitely generated cone, and
vice-versa.
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Cone Complexes

Definition

A cone complex, or more typically a polyhedral fan, is a polyhedral
complex in which all the polyhedra are cones.
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Normal Cones

Let P ⊂ Rd be a polyhedron and F be a face of P. The outer normal
cone of P at F is defined as

NP(F ) = {c ∈ Rd : F = facec(P)}.

The collection of outer normal cones of P is called the outer normal fan
of P.

The inner normal cone of P at F is defined as

NP(F ) = {c ∈ Rd : F = face−c(P)}.

Likewise, the collection of inner normal cones of P is called the inner
normal fan of P.
Thomas notes that the notation is the same in the book as they will not
be referenecd simultaneously in the book.
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Complete and Incomplete Fans

Definition

If the support of the fan is the entire space it lives in, we call it a
complete fan. Else, we say it is an incomplete fan.
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Exercise 7.8

Exercise 7.8. Prove that both the inner and outer normal fans of a
polyhedron are cone complexes. (You will need to show that the
intersection of two cones in a fan is a common face of each and that every
face of every cone in a fan is again a cone in the fan.)
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Exercise 7.22

Exercise 7.22. Let A be a point configuration with 6 points in R3 given
in Example. 7.12. Carefully describe its refinement poset. Indicate which
subdivisions ∆ are regular by giving a weight vector ω that induces each
regular subdivision.
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Gale Transform

Let B1, . . . ,Bn−d ∈ Rn be a basis for the vector space kerR(A). If we
organize these vectors as the columns of an n × (n − d) matrix

B := (B1 B2 · · · Bn−d),

we see that AB = 0.
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Gale Transform

Definition

Let B = {b1, . . . ,bn} ⊂ Rn−d be the n ordered rows of B. Then B is
called Gale transform of {v1, . . . , vn}. The associated Gale diagram of
{v1, . . . , vn} is the vector configuration B drawn in Rn−d .
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Theorem of Chapter 7

Theorem

Let 4 = {σ1, . . . , σt} be a subdivision of A and B be a Gale transform of
A. Then 4 is regular if and only if

t⋂
i=1

relint(cone(Bσi )) 6= ∅.
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