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1 Motivation

The tools of conformal mapping enables us to model different scenarios of fluid flow.

2 Two-Dimensional Fluid Flow

In this summary we will go over two important concepts (velocity potential and the stream function) in
simplified three dimensional fluid dynamics by considering the flow in two dimensions and assuming that the
motion in any plane parallel to the xy-plane is the same without any sources or sinks. To do this, we must
assume three important factors. In the scenarios that we will cover, the fluids will be irrotational where
angular speed of the fluid is zero, incompressible where density is the same, and free from viscosity
which is a measure of the fluid’s resistance as a function of the relative velocity of its particles, at every point
(x, y) in the domain considered. These approximations are sufficient in several applications of fluids.

Begin with defining the velocity of a fluid to be:

V (x, y) = p(x, y) + iq(x, y)

where (x, y) is a point on the plane. Then, circulation is defined as the line integral over some contour C
with respect to arc length σ of the tangential component of velocity along C:∫

C

VT (x, y)dσ.

Further, we can enumerate the rotation of the fluid, which can be understood as the angular speed of
the fluid at center (x, y). To do this, let∫

C

VT (x, y)dσ =

∫
C

p(x, y)dx+ q(x, y)dy.

Then, apply Green’s theorem to achieve rectangular integration bounds:∫
C

p(x, y)dx+ q(x, y)dy =

∫ ∫
R

[qx(x, y)− py(x, y)]dA.

Now, we are able to represent circulation as an integral over mean speeds of points along C. If C is a
circle, we can divide the integral by the circumference, 2πr, where r is the radius. Then, since speed =
radius · angularspeed, we divide the integral further by r. Hence, we have

1

πr2

∫ ∫
R

1

2
[qx(x, y)− py(x, y)]dA.

which is the expression for the mean value of the function ω(x, y) = 1
2 [qx(x, y) − py(x, y)], which is the

rotation of the fluid at center (x, y).
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Another important function in studying fluids is the velocity potential. Let D be an irrotational domain
and C be any simply connected contour in D. Since the fluid is irrotational, 0 = 1

2 [qx(x, y)− py(x, y)] =⇒
qx = py. Thus,

∫
C
p(s, t)ds + q(s, t)dt for a contour C joining two points (x0, y0) and (x, y) is actually

independent of path. Then, denote

φ(x, y) =

∫ (x,y)

(x0,y0)

p(s, t)ds+ q(s, t)dt

to be the velocity potential. Note that the gradient of the velocity potential is equal to the velocity of the
flow and since the fluid is incompresssible and there are no sources or sinks, it must also satisfy Laplace’s
equation

φxx(x, y) + φyy(x, y) = 0.

The level curves φ(x, y) = c for a constant c are called equipotentials.
For a simply connected irrotational domain, V = φx(x, y) + iφy(x, y) = φ(x, y) as stated above. Denote

ψ(x, y) to be the harmonic conjugate of φ(x, y). ψ is called the stream function and the curves of the ψ
where its output is constant are called streamlines of the flow.

The complex potential of the flow is the function

F (z) = φ(x, y) + iψ(x, y).

It is useful to use the complex potential of flows to extract velocity and rate of flow at points in the domain
by taking partial derivatives.

For instance by the Cauchy-Riemann equations,

F ′(z) = φx(x, y)− iφy(x, y) =⇒ V = F ′(z).

Interestingly, since φ is harmonic in the simply connected domain D, ψ can be written as

ψ(x, y) =

∫ (x,y)

(x0,y0)

p(s, t)ds− q(s, t)dt =

∫
C

VN (x, y)dσ

where VN (x, y) is the normal component of velocity at point (x, y). Then, we can understand ψ(x, y) to be
the rate of flow across the xy-plane on a contour C.

Using the velocity potential and the stream function in a combined manner through the complex potential
above, we can now model flows around a corner and flows around a cylinder. The key to these scenarios
is applying the correct transformation. Transforming the complex potential into these forms allows for the
correct calculation for velocity and rate of flow.

2.1 Example flow with corner

In the case of a downward flow meeting a corner in the first quadrant, the transformation would be w = z2 =
x2−y2+i2xy. Then, F (x, y) = A[w(x, y)]2 for some constant A. Then, it becomes clear that ψ(x, y) = 2Axy

and |V | = F ′(x, y) = 2A
√
x2 + y2.

2.2 Example flow with cylinder

In the case of a cylinder centered at the origin, the transformation would be w = z+ 1
z . Then, F (z) = A(z+ 1

z ).
Thus, V = A(1− 1

z2 ) and ψ = A(r − 1
r ) sin θ.

2.3 Example flow in channel through a slit

In the case of flow through a slit in a channel, let our transformation be w = Logz. Then, the width of the
channel in the uv-plane will be π and the slit is located at u = 0. Let Q = ψ(u1, 0) for u1 < 0 be the rate of
flow into the channel through the slit.
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2.3.1 Rate of flow

Then,

ψ =
Q

π

[
Arg(z − 1)− 1

2
Argz

]
.

2.3.2 Velocity

V =
Q

2π
coth

w

2
.

2.3.3 Stagnation Points

Stagnation points are defined to be points in the domain where the velocity is zero. There is a stagnation
point at w = πi.

2.3.4 Streamlines

The streamlines of the model satisfy

ψ(u, v) = c2 =
Q

π
Arg

(
sinh

w

2

)
.

2.4 Example flow in channel with an offset

This scenario utilizes the Schwarz-Christoffel transformation since the offset will bring a change in breadth
that can be modeled using a transformation along a polygon. Consider the figure below from Sec. 132.

To model this scenario correctly, we take w1 and w4 to be infinitely far left and far right respectively.
Thus, we can write x1 = 0, x3 = 1, x4 = ∞ and 0 < x2 < 1 to be determined, the mapping function would
be

dw

dz
= Az−1(z − x2)−1/2(z − 1)1/2

for some constants A and x2.

2.4.1 Complex Potential

Similarly to the previous scenario,
F = V0Logz = V0 ln r + iV0θ.

2.4.2 Velocity

V (w) =
V0
A

(z − x2
z − 1

)1/2
.
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3 Exercises

126.1. State why the components of velocity can be obtained from teh stream function by means of the
equations p(x, y) = ψy(x, y); q(x, y) = −ψx(x, y).

126.2. At an interior point of a region of flow and under the conditions that we have assumed, the fluid
pressure cannot be less than the pressure at all other points in a neighborhood of that point. Justify this
statement with the aid of statements in Secs. 124, 125, and 59.

126.3. For the flow around a corner described in Example 1, Sec. 126, at what point of the region x ≥ 0, y ≥ 0
is the fluid pressure greatest?

126.4. Show that the speed of the fluid at points on the cylindrical surface in Exapmle 2, Sec. 126, is
2A| sin θ| and also that the fluid pressure on the cylinder is greatest at the poitns z = ±1 and least at the
points z = ±i.
126.5. Write the complex potential for the flow around a cylinder r = r0 when the velocity V at a point z
approaches a real constant A as the point recedes from the cylinder.

126.6. Obtain the stream function ψ = Ar4 sin 4θ for a flow in the angular region r ≥ 0, 0 ≤ θ ≤ π
4 that is

shown in Fig. 175. Sketch a few of the streamlines in the interior of that region.

126.7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite region −π2 ≤ x ≤
π
2 , y ≥ 0

that is shown in Fig. 176. Write the equations of the streamlines.

126.8. Show that if the velocity potential is φ = A ln r(A > 0) for flow in the region r ≥ r0, then the
streamlines are the half lines θ = c(r ≥ r0) and the rate of flow outward through each complete circle about
the origin is 2πA, corresponding to a source of that strength at the origin.

126.9. Obtain the complex potential F = A(z2 + 1
z2 ) for a flow in the region r ≥ 1, 0 ≤ θ ≤ π/2. Write

expressions for V and ψ. Note how the speed |V | varies along the boundary of the region, and verify that
ψ(x, y) = 0 on the boundary.

132.2. Explain why the solution of the problem of flow in a channel with a semi-infinite rectangular
obstruction (Fig. 191) is included in the solution of the problem treated in Sec. 121.

132.5. Let F (w) denote the complex potential function for the flow fo a fluid over a step in the bed of a
deep stream represented by the shaded region of the w plane if Fig. 29, Appendix 2, where the fluid velocity
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V approaches a real constant V0 as |w| tends to infinity in that region. The transformation that maps the
upper half of the z plane onto the region is noted in Exercise 3. Use the chain rule

dF

dw
=
dF

dz

dz

dw

to show that
V (w) = V0(z − 1)1/2(z + 1)−1/2;

and, in terms of the points z = x whose images are the points along the bed of the stream, show that

|V | = |V0|
√∣∣∣x− 1

x+ 1

∣∣∣.
Note that the speed increases from |V0| along A′B′ until |V | =∞ at B′, then diminishes to zero at C ′, and
increases toward |V0| from C ′ to D′; note, too, that the speed is |V0| at the point

w = i(
1

2
+

1

π
)h,

between B′ and C ′.

3.1 Solutions

126.1. In a simply connected domain, we note that the complex potential F (z) = φ(x, y) + iψ(x, y) is
analytic throughout. Thus, F ′(z) = φx(x, y) + iψx(x, y) = ψy(x, y)−φx(x, y) by Cauchy-Riemann equations
and V = p(x, y) + iq(x, y). Thus, p(x, y) = ψy(x, y) and q(x, y) = −ψx(x, y).
126.2. By way of contradiction, suppose that by Bernoulli’s theorem P (z) = ρc− ρ

2 |V (z)|2 > P (z0) for some
constant c and constant density ρ at some neighborhood of z0. Let g(z) = 1/P (z). Note, P (z) is analytic
if V (z) is analytic in the domain. Then, our problem statement becomes ”g(z) cannot be greater at one
interior point than any other points in the neighborhood of that point.” By the maximum modulus principle,
however, we know that if pressure is not constant throughout the domain and since g(z) is analytic, then
|g(z)| has no maximum within the domain, and so there does not exist any point such that the pressure is
less than the pressure at all other points in a neighborhood of that point.
126.3. Bernourlli’s principle states that P

ρ + 1
2 |V |

2 = c for some constant c. Since we are considering
incompressible fluids, ρ is also constant. Thus, pressure is greatest when velocity is least and in our problem
that is at the point z = 0.
126.4. From our notes above, we know that in the case of a cylinder, V (z) = A(1 − 1/z2). Thus, we wish
to show that |1 − 1/z2| = 2| sin θ|. Let z = re−iθ and since we are considering the cylinder in example 2,
r = 1. Then, |1 − 1/z2| = |1 − e2iθ| = |1 − cos 2θ − i sin 2θ|. If we take the modulus of the RHS, we have√

(1− cos 2θ)2 + (sin 2θ)2 =
√

4 1−cos 2θ
2 = 2

√
1−cos 2θ

2 . This is exactly the expression for |2 sin θ|. Thus,

|V (z)| = 2A| sin θ|.
126.5. We will map an r0 cylinder to our typical r = 1 cylinder. Let Z = z/r0 and then w = Z + 1/Z =
z/r0 + r0/z. Then, we initially have F (z) = c(z/r0 + r0/z) for some constant c. Since V = F ′(z), we have
V = c/r0 − r0/z2. Taking the limit as r goes to ∞, we have

lim
r→∞

V = A = lim r →∞c/r0 − r0/z2 = c/r0.

Thus, writing F (z) in terms of A,
F (z) = A(z + r20/z).

126.6. Naturally, we consider the transformation w = z4. Then, w = r4ei4θ = r4 cos 4θ + ir4 sin 4θ. Thus,
F (z) = Az = φ(z) + iψ(z) = Ar4 cos 4θ + iAr4 sin 4θ and so the stream function ψ = Ar4 sin 4θ. The
streamlines will look exactly like those in the figure below.
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126.7. Let our transformation be w = sinz. Then, F = Aw = A sin z. Further, Aw = A(u+iv) = A sin z =

A( e
iz−e−iz

2i ). Letting z = x+ iy,

A(u+ iv) =
A

2i
· (eix−y − e−ix+y) =

A

2i
· (e−y(cos ix+ i sin ix)− ey(cos−ix+ i sin−ix)).

Substituting for hyperbolic trig functions, we have Au + iAv = A sinx cosh y + iA cosx sinh y. Thus, the
streamlines of this flow satisfy c = A cosx sinh y for some constant c.
126.8. Letting our complex potential be F (z) = ALogz, we have F (z) = A(ln r+ iθ). Thus, φ = A ln r and
ψ = Aθ. Our streamlines must then satisfy c = θ for some constant c. Since the stream function is Aθ, we
let θ = 2π to be the complete circle about the origin, and so the rate of flow is 2πA.
126.9. Let our complex potential be F (z) = A(z2 + 1/z2). Then,

V = F ′(v)

= A2z − 2A/z3

= A2z − 2A/z3

Finding ψ, we let z = reiθ. Then, F (z) = Ar2ei2θ+Ar−2e−2iθ = Ar2 cos 2θ+iAr2 sin 2θ+Ar−2 cos−2θ+
iAr−2 sin−2θ. Thus, =(F (z)) = ψ = A(r2 − r−2) sin 2θ. On the boundary, r = 1, and so ψ(1eiθ) = 0.

Further on the boundary, r = 1 and theta varies from 0 to π/2. Thus, given our transformation, F ′(z)
must vary, and so the speed varies along the boundary.
132.2. By the Schwarz-Christoffel transformation, our limiting positions, ω2, ω3, and ω4 are those boundary
points considered in the problem of Sec. 121. Thus, the two are related by ways of conformal mapping.
132.5. Let our complex potential be F (z) = cz. Given that our transformation is w = h

π [(z2 − 1)1/2 +

cosh−1 z], then

dw

dz
=
h

π
z(z2 − 1)−1/2 +

h

π
(z2 − 1)−1/2 =

h

π
·

√
1

(z − 1)(z + 1)
·
√

(z + 1)2 =
h

π

√
z + 1

z − 1
.

Then, V (w) = dF
dw . Thus, V (w) = dF

dz
dz
dw = c · (dwdz )−1 = cπ

h

√
z−1
z+1 . Thus, lim|w|→∞ V (w) = limz→∞ V (z) =

cπ
h

√
1−1/z
1+1/z = cπ

h . Then, V0 = cπ
h and so V (w) = V0

√
z−1
z+1 as desired. Further, for the points z = x whose

images are the points along the bed of the stream,

|V | = V0

√
x− 1

x+ 1
.

Plugging in w0 = i( 1
2 + 1

π )h into V (w) from above, we have V (w0) = V0.

4 Applications

The obvious application of studying two dimensional fluid flows are that we can scale them to three dimen-
sional fluid dynamics. It seems to me that we will likely be successful in modeling fluid dynamics in three
dimensions when we examine a large enough scale such that varieties in fluid density and viscosity become
negligible. For example, applying our formulas to capillary action would likely result in greater error than
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if we were to examine flows in rivers. Further, we have yet to consider more turbulent flows, where there
might be numerous sources and sinks for example, that would create more unpredictability. Considering
these factors would help draw greater breadth in our understanding of fluid flows.

When considering turbulence, one of the famous extensions of the problem with fluid flows is the Navier-
Stokes existence and smoothness problem. The Navier-Stokes equations are a series of PDEs that describe
the motion of a fluid in Rn and are to be solved for some unknown velocity and pressure vector for some
point in Rn and time t. While there are more variables to consider than our textbook goes over, the initial
assumptions stay relatively the same. In the context of this millenium problem, we assume that the fluid is
incompressible, Newtonian, and isothermal.

Further, we can consider the effects of heat on fluids. It is commonly known that heat affects the density
of fluids, and so one potential topic to study is modelling convection in fluids. For example, we can study the
ideal gas law and how temperature is related to pressure, and from above, we know that pressure is related
to fluid velocity.
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